2024 Annual Consumer Confidence Report PWSID AL0001422 Northeast Alabama Water, Sewer, and Fire Protection District

We are pleased to present to you this year's Annual Consumer Confidence Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water sources are the Waterloo Springs (combination ground/surface water) which supplies the Waterloo Springs Water Treatment Plant, located in Gaylesville, Alabama; and the Tennessee River/Lake Guntersville (surface water), which is the source for the Monsanto Water Treatment Plant, located in Guntersville, Alabama and Highpoint Water Treatment Plant, which is located in Fort Payne. Our extensive network of waterlines allows us to interconnect with and purchase water from several water systems within northeast Alabama. These systems, their water sources, the types and order of treatments used are listed below. Northeast sells water to other systems some on emergency and some regular. These systems are Crossville, Collinsville, Cedar Bluff, Asbury, Sardis, Section – Dutton, Fort Payne. The system population for Northeast Water is around 16,000 active and 4,000 inactive accounts.

Definitions:

Aeration - The mixing of air into water; Removes certain dissolved gases in the water and aids in the removal of iron and manganese.

Adsorption – Adsorption involves the adhesion of organic contaminants to an adsorbent such as activated carbon.

Oxidation - The conversion of organic substances to simpler, more stable forms by either chemical or biological means.

- <u>Coagulation</u> The water treatment process that causes very small suspended particles to attract one another and form larger particles; This is accomplished by adding a chemical, called a coagulate (e.g. aluminum sulfate or ferric chloride), that neutralizes the electrostatic charges on the particles that cause them to repel each other.
- <u>Flocculation</u> The water treatment following coagulation, which uses gentle stirring to bring suspended particles together so they will form larger, more settleable clumps called floc.
- Sedimentation The water treatment process that involves reducing the velocity of water in basins so the suspended material, such as floc, can settle out by gravity.
- <u>Chlorination</u> (Pre) = Aid in Coagulation; (Post) = the process of adding chlorine to water to kill disease-causing organisms or to act as an oxidizing agent.
- <u>Stabilization</u> The water treatment process intended to reduce the corrosive or scale-forming tendencies of water (e.g. pH adjustment or Polyorthophosphates).
- Fluoridation The water treatment process in which a chemical (e.g. Sodium Fluoride or Hydrofluosilicic Acid) is added to the water to increase the concentration of fluoride ions to an optimum level. The purpose of fluoridation is to promote dental health and bone density.

System	Water Source/Type	Treatment
NE. AL. Water Dist. – Highpoint WTP	Lake Guntersville/Surface Water	Pre-Chlorination, Coagulation, Flocculation, Membrane Filtration, and Post-Chlorination
NE. AL. Water Dist. – Monsanto WTP	Lake Guntersville/Surface Water	Oxidation, Pre-Chlorination, Pre-Treatment Coagulation, Pre-Filtration, Formal Coagulation Flocculation, Final Filtration, and Post-Chlor.
NE. AL. Water Dist. – Waterloo WTP	Waterloo Spring/Surface Water	Pre-Chlorination, Coagulation, Flocculation Filtration, and post-chlorination
Municipal Utilities Bd. – Albertville, AL	Tennessee River – Short Creek/Surface Water	Coagulation, Stabilization, Pre-Chlorination Flocculation, Sedimentation, Filtration, Chlorination, Stabilization, and Fluoridation
Cave Spring, Georgia	2 Underground Springs – City of Cave Spring	Chlorination, Fluoridation
Cherokee County – Centre, AL	Bristow Spring/Ground Water	Chlorination
Cherokee County – Centre, AL Emergency Connections:	Sanford Spring /Ground & Surface Water	Coagulation, Filtration, and Chlorination
* DeKalb-Jackson WSD – Stevenson, AL	Tennessee River/Surface Water	Pre-chlorination, Coagulation, Flocculation, Sedimentation, Filtration, Post-Chlorination
* Fort Payne WWB	Allen Branch Reservoir, Big Wills Reservoir, and the Tennessee River/Surface Waters	Oxidation, Coagulation, Flocculation, Sedimentation, Pre-Chlorination, Filtration
* WWB of Section and Dutton Rainsville, AL	Tennessee River/Surface Waters	Pre-Chlor., Stabilization, and Fluoridation Oxidation, Coagulation, Flocculation, Sedimentation Filtration, Chlorination, and Fluoridation

* Water Utilities listed above that are not included in the report, no water was purchased during this reporting period from that utility.

If you have any questions about this report or concerning your water utility, please contact Mr. Johnny Jordan, General Manager at (256) 845-6186 or Michael Smith, Compliance Operator at (256) 845-6186 or by writing to this address: P.O. Box 681359, Fort Payne, AL 35968. For additional information you may log on to our website at www.neawater.com. We want our valued customers to be informed about their water utility. You can attend any of our regularly scheduled board meetings. They are held on the third Monday of each month, at 6:30 p.m., at the office of the Water Board, located at 2416 Beck Industrial Boulevard, Fort Payne, Alabama.

The Northeast Alabama Water, Sewer, and Fire Protection District Board of Directors are:

Larry McCallie – DeKalb County, Chairman; Keith Swisher – Marshall County, Vice-Chairman; John Roberts – Cherokee County; James May – DeKalb County; Gary Williamson – Etowah County; D.L. Powell – Town of Gaylesville

The Northeast Alabama Water, Sewer and Fire Protection District routinely monitors for over 95 constituents in your drinking water according to Federal and State laws. The table included in this report shows the detected contaminants, resulting from our monitoring for the period of **January 1st to December 31st, 2024.** All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table, you may find many terms and abbreviations that you may not be familiar with. To help you better understand these terms we've provided the following definitions:

MCLG: Maximum Contaminant Level Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MRDLG: Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MRDL: Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

AL: Action Level - The concentration of a contaminant that triggers treatment or other requirements a water system shall follow.

<u>Variance and Exemption</u> – State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

TT: Treatment Technique - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

ND: Non-Detects- Laboratory analysis indicates that the constituent is not present.

NTU: Nephelometric Turbidity Unit - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

SU: Standard Units

ppm: Parts per million - Milligrams per liter (mg/l) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

ppb: Parts per billion - Micrograms per liter ($\mu g/l$) - One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

ppt: Parts per trillion - Nanograms per liter (nanograms/l) - One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

pCi/l: Picocuries per liter—Picocuries per liter is a measure of the radioactivity in water.

90th Percentile - 90% of samples are equal to or less than the number in the chart.

HRAA: Highest Rolling Annual Average; based on seven quarters of testing.

RAA: Rolling Annual Average

NA: Not Applicable; Not Available

LT2 ESWTR: Long Term 2 Enhanced Surface Water Treatment Rule

IDSE: Initial Distribution System Evaluation

CDC: Center for Disease Control

EPA: Environmental Protection Agency

ADEM: Alabama Department of Environmental Management

ND: No Detect

Test results that are specific to the *Highpoint Treatment Plant* are designated by **HP**; test results that are specific to the *Monsanto Water Treatment Plant* are designated by **MS**; and test results that are specific to the *Waterloo Springs Water Treatment Plant* are designated by **WS**.

Standard List of Primary Drinking Water Contaminants

Standard List of Pr			****
Contaminant	MCL	Contaminant	MCL
Bacteriological		Endrin	2 ppb
		Epichlorohydrin	TT
Total Coliform Bacteria	<5%	Ethylbenzene	700 ppb
Turbidity	TT	Ethylene dibromide	50 ppt
Fecal Coliform and E.coli	0	Glyphosate	700 ppb
Radiological		Heptachlor	400 ppt
Alpha emitters (ρCi/l) ²	15	Heptachlor epoxide	200 ppt
Beta/Photon emitters (pCi/l) ³	4	Hexachlorobenzene	1 ppb
Deta/T noton ennuers (per/)	·		· PP°
Combined Radium (pCi/l)	5	Hexachlorocyclopentadiene	50 ppb
(WS2016) ⁴		, ,	**
Uranium	30 ppb	Lindane – Gamma BHC	200 ppt
Inorganic Chemicals		Methoxychlor	40 ppb
Antimony	6 ppb	Oxamyl [Vydate]	200 ppb
Arsenic	10 ppt	PCBs	500 ppt
Asbestos	7 MFL	Pentachlorophenol	1 ppb
Barium	2 ppm	Picloram	500 ppb
Beryllium	4 ppb	Simazine	4 ppb
Cadmium	5 ppb	Toxaphene	3 ppb
Chromium	100 ppb	Benzene	5 ppb
Copper	AL=1.3	Carbon Tetrachloride	5 ppb
	ppm		
Cyanide	200 ppb	Chlorobenzene (VOC - Mono,	100 ppb
		Di, or Tri)	
Fluoride	4 ppm	Dibromochloropropane	200 ppt
Lead	AL=15 ppb	o-Dichlorobenzene	600ppb
Mercury	2 ppb	p-Dichlorobenzene	75
Nitrate	10 ppm	1,2-Dichloroethane	5 ppb
Nitrite	1 ppm	1,1-Dichloroethylene	7 ppb
Total Nitrate and Nitrite	10 ppm	cis-1,2-Dichloroehtylene	70 ppb
Selenium The Wisser	50 ppb	trans-1,2-Dichloroethylene Dichloromethane	100 ppb
Thallium Organic Chemicals	2 ppb	1,2-Dichloropropane	5 ppb 5 ppb
2,4-D	70 ppb	Ethylbenzene	700 ppb
2,4,5-TP (Silvex)	50 ppb	Ethylene Dibromide (SOC –	50 ppt
2,4,5-11 (SHVCX)	эо рро	EDB)	30 ррг
Acrylamide	TT	Styrene	100 ppb
Alachlor	2 ppb	Tetrachloroethylene	5 ppb
Atrazine	3 ppb	1,2,4-Trichlorobenzene	70 ppb
Benzene	6 ppb	1,1,1-Trichloroethane	200 ppb
Benzo(a)pyrene [PAHs]	200 ppt	1,1,2-Trichloroethane	5 ppb
Carbofuran	40 ppb	Trichloroethylene	5 ppb
Chlordane	2 ppb	TTHM (System-wide Average)	80 ppb
Dalapon	200 ppb	HAA5 (System-wide Average)	60 ppb
Di (2-ethylhexyl)adipate	400 ppb	Toluene	1 ppm
Di (2-ethylhexyl)phthalates	6,000 ppt	Vinyl Chloride	2 ppb
Dinoseb	7 anh	Vylanac	10
Dinoseb	7 ppb 20 ppb	Xylenes TOC	10 ppm TT
Dioxin [2,3,7,8-TCDD]	30 ppq	Chlorine	4 ppm
Chloramines	30 ppq 4 ppm	Chlorine Dioxide	4 ppm 800 ppb
Chlorite	1 ppm	Bromate	10 ppb
CHIOTIC	I I ppiii	Divillate	10 իին

List of UCMR 4 Contaminants								
Chemical Contaminants (Entry Poi	nt)	Cyanotoxins(Entry Point)	Distribution Samples					
Germanium	Total permethrin (cis- & trans-)	Anatoxin-A	HAA5					
Manganese	Tribufos	Cylindrospermopsin	HAA6Br					
Alpha-hexachlorocyclohexane	1-butanol	Microcystin-LA	HAA9					
Chlorpyrifos	2-methoxyethanol	Microcystin-LF	Total organic carbon (TOC)					
Dimethipin	2-propen-1-ol	Microcystin-LR	Bromide					
Ethoprop	Butylated hydroxyanisole	Microcystin-LY						
Oxyfluorfen	O-toluidine	Microcystin-RR						
Profenofos	Quinoline	Microcystin-YR						
Tebuconazole		Nodularin						

		,	Table o	f De	etected C	ontaminant	is .	
Contaminant	MCLG MCL Range Amount Detected						Detected	Likely Source of Contamination
Bacteriological							Unit	
Turbidity¹ Monsanto WTP Highpoint WTP Waterloo WTP Albertville Cherokee County Stanford Spring Bristow Spring (well)	N/A	TT	0.02	-	2.72	0.09 0.04 0.09 0.13 0.02 2.72	NTU	Soil runoff
Radiological							Unit	
Alpha emitters ² Monsanto WTP (2016) Highpoint WTP (2020) Waterloo WTP (2016) Albertville (2020) Cherokee County (2021)	0	15	0	-	2.5	2.5±1.5 0±0.7 .62±1.7 1.4 0.6±1.13	pCi/l	Erosion of natural deposits
Combined Radium ⁴ Monsanto WTP (2016) Highpoint WTP (2020) Waterloo WTP (2016) Cherokee County (2021)	5	5	0	<u>+</u>	1.05	.071 <u>+</u> 0.49 0 <u>+</u> 0.23 1.05 <u>+</u> 0.49 .76 <u>+</u> 0.46	pCi/l	Erosion of natural deposits
Inorganic							Unit	
Barium Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cave Spring	2,000	2,000	11.2	-	41.0	18.4 20.1 36.1 41.0 11.2	ppb	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Fluoride Albertville Cherokee County Highpoint WTP Monsanto WTP Waterloo WTP Cave Spring	4	4	ND	-	1.77	0.082 0.248 ND ND ND 1.77	ppm	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead (MS, WS, HP) (2022) Cherokee County (2022) Cave Spring (2022) Albertville	0	AL=15	ND ND ND ND ND		.002 ND 0. ND	.002 ND 2 ND	ppb	Corrosion of household plumbing systems; erosion of natural deposits. (90th percentile value)
Copper Albertville (MS, WS, HP) WTP (2022) Cherokee County (2022) Cave Spring (2022)	1.3	1.3	ND ND ND ND ND		0.12 0.10 0.12 0.02 0.89	0.10* 0.12* 0.016* 0.89*	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives (*= 90 th percentile value)
Nitrate Albertville Cherokee County Highpoint WTP Monsanto WTP Waterloo WTP Cave Spring	10	10	0.21	-	1.10	1.10 0.21 0.92 1.01 1.07 .36	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Volatile Organic Contaminants							Unit	
Total Trihalomethanes (TTHM) Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	0	80	ND 17.3 16.5 3.8 21.0 ND	-	52.0 19.9 22.0 5.4 52.0 19	HRAA 18.1 18.5 4.4 39.0 19	ppb	By-product of drinking water chlorination. Compliance is based on a system-wide Running Annual Average rather than individual values.
Haloacetic Acid (HAA5) Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	0	60	ND 17.4 13.4 1.0 24.0 ND		42.0 19.6 15.3 3.7 42.0 19	HRAA 18.6 14.1 2.1 36.0 19	ppb	By-product of drinking water chlorination. Compliance is based on a system-wide Running Annual Average rather than individual values.
Organic Contaminants							Unit	
Total Organic Carbon (TOC) Highpoint WTP Monsanto WTP Waterloo WTP Albertville	0	TT	0.0 1.1 0.0 0.0 1.1	- - -	2.0 1.5 1.5 1.0 2.0	RAA 1.3 1.1 0.1 1.6	ppm	Naturally present in the environment.
Chlorine Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County Cave Spring	4.0	4.0	1.00 2.44 2.75 2.46 1.10 1.00		2.91 2.49 2.91 2.48 2.60 2.00	RAA 2.46 2.82 2.46 1.88 1.50	ppm	Water additive used to control microbes.
Unregulated Contaminants							Unit	
Chloroform Highpoint WTP Monsanto WTP Waterloo WTP Albertville	N/A	N/A	2.1	-	18.0	13.0 17.0 2.1 18.0	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff
Bromodichloromethane Highpoint WTP Monsanto WTP Waterloo WTP Albertville	N/A	N/A	1.3	-	6.7	6.7 5.0 1.3 4.2	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff
Dibromochloromethane Highpoint WTP Monsanto WTP Waterloo WTP	N/A	N/A	0.6		1.6	1.6 1.1 0.6	ppb	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff
Secondary Contaminants							Unit	
Aluminum Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	0	0.2	0.017	-	0.043 0.017 0.011 0.043 0.034 0.022	0.017 0.011 0.043 0.034 0.022	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Alkalinity Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County	N/A	N/A	44.0	-	122	46.0 44.0 106 122	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Calcium Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County	N/A	N/A	17.6	-	48.8	17.8 17.6 30.1 48.8	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Carbon Dioxide Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County	N/A	N/A	1.8	-	23.5	1.8 1.8 1.8 23.5	ppm	Erosion of natural deposits or as a result of treatment with water additives

Chloride Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	N/A	250	4.5	-	14.6	8.25 14.6 4.5 13.6 4.5	ppm	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff
Conductance Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County	N/A	N/A	160	-	242	163 160 227 242	Umohs/c m	Naturally occurring in the environment or as a result of treatment with water additives
Hardness Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	N/A	N/A	40.3	-	134	61.7 60.5 112 40.3 134	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Magnesium Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County	N/A	N/A	4.01	-	11.4	4.21 4.01 8.89 11.4	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Secondary Contaminants							Unit	
pH Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	N/A	N/A	6.6	-	7.2	6.8 6.6 7.2 7.0 7.1	su	Naturally occurring in the environment or as a result of treatment with water additives
Sodium Highpoint WTP Monsanto WTP Waterloo WTP Cherokee County Albertville	N/A	N/A	ND	-	10.1	6.94 6.11 3.31 ND 10.1	ppm	Naturally occurring in the environment or as a result of treatment with water additives
Sulfate Highpoint WTP Monsanto WTP Waterloo WTP Albertville Cherokee County	N/A	250	4.2	-	19.4	19.4 9.9 4.2 9.5 4.3	ppm	Naturally occurring in the environment; erosion of natural deposits
Total Dissolved Solids Highpoint WTP Monsanto WTP Waterloo WTP	N/A	500	77	-	164	159 148	ppm	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff

Cryptosporidium is a significant concern in drinking water because it contaminates surface waters used as drinking water sources, it is resistant to chlorine and other disinfectants, and it has caused waterborne disease outbreaks. Consuming water with Cryptosporidium, a contaminant in drinking water sources, can cause gastrointestinal illness, which may be severe in people with weakened immune systems (e.g. infants and the elderly) and sometimes fatal in people with severely compromised immune systems (e.g. cancer and AIDS patients).

The purpose of the LT2 rule is to reduce disease incidence associated with Cryptosporidium and other pathogenic microorganisms in your drinking water. The rule applies to <u>ALL</u> public water systems that use surface water or ground water that is under the direct influence of surface water.

*Cryptosporidium monitoring/testing was performed on each <u>RAW Water</u> source for each respective water treatment plant (i.e. MS&WS) at a frequency of once per month for twenty-four (24) consecutive months (April, 2015 thru March, 2017).

Non-Compliance Microbiological (LT2ESWTR)								
CONTAMINANT	MCLG MCL Range Amount Detected							Likely Source of Contamination
Bacteriological						U	nit	
Cryptosporidium	0	TT	0	-	0.90		Organisms/	Wildlife and/or human waste
* Monsanto WTP			0	-	0.49	0.49	Liter	
* Waterloo Spring WTP			0	-	0.90	0.90		
* Highpoint WTP			0	-	0	0		

Giardia	0	TT	0	-	2.1		Organisms/	Wildlife and/or human waste
Monsanto WTP			0	-	0.3	0.1	Liter	
Highpoint WTP			0	-	0.1	0.1		
Waterloo Spring WTP			0	-	2.1	2.1		
Total Coliform	0	TT	0	-	>2420		#/100 ml	Wildlife and/or human waste
Monsanto WTP			133	-	>2420	>2420		
Highpoint WTP			0	-	>2420	>2420		
Waterloo Spring WTP			63	-	>2420	>2420		
Non-Compliance Microbiolo	gical (LT2F	SWTR)						
CONTAMINANT	MCLG	MCL	Ţ	Rai	nge	Amount	Detected	Likely Source of Contamination
	MCLG	WICL	*		-sc	Amount	Beteeteu	Emery source or contamination
Bacteriological	MeEG	MCL	·		ingt.		nit	
Bacteriological E. coli	0	TT	0	-	691			Wildlife and/or human waste
				- -			nit	·
E. coli			0	-	691	U	nit	·

Unregulated Contaminant Monitoring Rule 4 (UCMR4) Contaminants – 2019 and 2020								
UCMR4	CMR4 Level Unit		Violation	Likely Source Of Contamination				
Contaminants	Detected	Measure	Y/N					
Manganese	ND - 8.0	ppb	NO	Erosion of natural deposits; leaching from pipes				
Total organic carbon (TOC)	ND – 1.8	ppb	NO	Soil runoff				
Bromide	17.0 - 28.2	ppb	NO	Naturally occurring in the environment or from discharge or runoff				
HAA5	16.0 – 35.6	ppb	NO	By-product of drinking water chlorination				
HAA6Br	2.4 – 10.6	ppb	NO	By-product of drinking water chlorination				
НАА9	18.4 – 45.2	ppb	NO	By-product of drinking water chlorination				

Northeast Alabama: PFAS (in ppb)							
PFAS	Detected	PFAS	Detected	PFAS	Detected		
11Cl-PF3OUdS	ND	Perfluorodecanoic acid	ND	Perfluorooctanoic acid	ND		
9CI-PF3ONS	ND	Perfluorohexanoic acid	ND	Perfluorotetradecanioc acid	ND		
ADONA	ND	Perfluorododecanoic acid	ND	Perfluorotridecanoic acid	ND		
HFPO-DA	ND	Perfluoroheptanoic acid	ND	Perfluoroundecanioc acid	ND		
NEtFOSAA	ND	Perfluorohexanesulfonic acid	ND	* Total PFAS	0.0022 - 0.0028		
NMeFO3AA	ND	Perfluorononanoic acid	ND				
*Perfluorobutanesulfonic	0.0022 -	Perfluorooctanesulfonic					
acid	0.0028	acid	ND				

^{*}Northeast Alabama Water District Water Plants: Highpoint- 0.0028, Monsanto- 0.0022, Waterloo-nothing detected (ND)

PFAS monitoring was performed as required by ADEM during 2022. PFAS are a group of man-made chemicals for which the EPA has not yet established primary drinking water standards. For more information on PFAS contaminants, please refer to https://www.epa.gov/pfas

IDSE's are one-time studies conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAA5s). Water systems will use the results from the IDSE, in conjunction with their Stage I Disinfection By-Product Monitoring Rule compliance monitoring data, to select compliance monitoring locations for the Stage 2 Disinfection By-Product Monitoring Rule.

Distribution System Evaluation (DSE) 2016-Present								
CONTAMINANT	MCLG	MCL	R	ang	ge	Likely Source of Contamination		
Organics							Units	
Total Trihalomethanes	N/A	N/A					ppb	By-product of drinking water chlorination.
(TTHM)								
NEAW - System-Wide			2.0	-	25.0	25.0		
Haloacetic Acid (HAA5)	N/A	N/A					ppb	By-product of drinking water chlorination.
NEAW - System-Wide			6.0	-	38.0	38.0	- 1	

Based on a study conducted by ADEM, with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

¹Turbidity: Turbidity is the cloudy appearance of water caused by the suspended and colloidal matter. In the waterworks field, a turbidity measurement is used to indicate the clarity of water.

²Gross Alpha: ADEM has reduced the required monitoring of many water systems throughout the state to (1) sample of Gross Alpha every nine (9) years because the concentrations of these contaminants do not change frequently.

³Beta Photon: The data presented is from the most recent testing done in accordance with applicable ADEM regulations.

⁴Combined Radium: The data presented is from the most recent testing done in accordance with applicable ADEM regulations.

⁵Copper and Lead: The state requires us to monitor for thirty (30) samples of Lead and Copper every three (3) years because the concentrations of the contaminants does not change frequently.

⁶If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NORTHEAST ALABAMA WATER DISTRICT is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or are man made. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

SOURCE WATER ASSESSMENTS

The Source Water Assessments (SWA) for the Waterloo Springs WTP, Highpoint WTP, and the Monsanto WTP on the Tennessee River have been completed. The SWA is the systematic identification of contaminant sources within a watershed area and the relative susceptibility to these contamination sources. The SWA consists of: watershed delineation, contamination source inventory, susceptibility analysis, contingency plans and public awareness. The susceptibility of each contaminant was evaluated and determined jointly with representatives from ADEM, Northeast Alabama Water District, and Greenhill Engineering, Inc. The overall rating for Waterloo Springs and the Tennessee River Watershed contaminants was a Low Susceptibility rating. The SWA is updated every four years. Individual members of the public may review all assessment documents during normal business hours of operation at the water system's office. SWA documents will be maintained on display at the office for easy access to the public. Copies of the assessment documents shall be provided to members of the public upon request after payment of a nominal reproduction fee.

VULNERABILITY ASSESSMENT AND EMERGENCY RESPONSE PLANS

A Vulnerability Assessment (VA) has been conducted to help protect the water system from intentional damage. The Emergency Response Plans (ERPs) have been completed and are available in the event of an emergency. Certifications for the VA and the ERPs have been submitted to the EPA. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. Please call our office if you have any questions.

Johnny Jordan	
Johnny Jordan, General Manager	